
Saros Developer Documentation
i

Saros Developer Documentation

Saros Developer Documentation
ii

Copyright © 2012 Holger Hans Peter Freyther

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/-
licenses/by/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Saros Developer Documentation
iii

COLLABORATORS

TITLE :

Saros Developer Documentation

ACTION NAME DATE SIGNATURE

WRITTEN BY September 3, 2012

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Saros Developer Documentation
iv

Contents

1 Introduction 1

1.1 Overview . 1

1.2 About this manual . 1

2 Rules 2

2.1 Code Rules . 2

2.2 Review Rules . 2

3 Installing and Configuring Plugins 3

3.1 Installing the SVN Plugin . 3

3.1.1 Installation of Subclipse (textual) . 3

3.1.2 Installation of Subclipse (graphical) . 4

3.2 Installing the Git Plugin . 7

3.2.1 Installation of EGit (textual) . 7

3.2.2 Installation of EGit (graphical) . 8

3.2.3 Known issues . 10

3.2.3.1 Password for the private key is not accepted . 10

3.3 Installing the JTourbus Plugin . 10

3.3.1 Installation of JTourBus (textual) . 10

3.3.2 Installation of JTourBus (graphical) . 11

4 Sourcecode and Review 14

4.1 Version Control with Git . 14

4.1.1 Introduction to Git . 14

4.1.2 Git clone with EGit (textual) . 14

4.1.3 Git clone with EGit (graphical) . 15

4.2 Configuring Git for Gerrit . 20

4.2.1 Creating an SSH key . 20

4.2.2 Setting your name and email address . 23

4.3 Register on Gerrit . 25

4.3.1 Signing up using OpenID . 25

Saros Developer Documentation
v

4.3.2 Concepts and Terminology . 27

4.3.3 Making a review . 27

4.3.4 Submitting a change . 29

4.4 Summary . 29

4.4.1 System Overview . 29

5 Making changes to Saros 31

5.1 Cleaning your working copy . 31

5.1.1 Reverting local modifications . 31

5.1.2 Deleting untracked/new files . 33

5.2 Downloading a change . 35

5.2.1 Downloading a change (textual) . 35

5.2.2 Downloading a change (graphical) . 35

5.3 Doing your first change . 37

5.3.1 The first change (textual) . 37

5.3.2 The first change (graphical) . 38

5.3.3 Understanding build failures . 42

5.3.4 Dealing with feedback . 42

5.4 Updating your changes . 44

5.4.1 Fetch, Rebase and Push . 44

5.5 Advanced Git Topics . 47

5.5.1 Cherry-pick . 47

5.5.2 Staging Changes . 47

5.6 Tasks during a release . 47

5.6.1 Pushing to a non default branch (textual) . 48

5.6.2 Pushing to a non default branch (graphical) . 48

6 Patterns and Anti-Patterns 50

6.1 Anti-Patterns . 50

6.1.1 PicoContainer usage . 50

6.1.2 Use Interfaces . 51

6.1.3 Splitting Work . 51

6.1.4 ... 51

7 Configuration of Gerrit 52

7.1 Grant push access to Gerrit . 52

7.2 Granting +2/-2 and the right to submit . 52

7.3 Granting branch creation . 52

Saros Developer Documentation
vi

List of Figures

4.1 Code, Review and Test workflow . 30

Saros Developer Documentation
vii

List of Tables

5.1 Destination Reference . 48

Saros Developer Documentation
1 / 52

Chapter 1

Introduction

1.1 Overview

Saros is using the Git version control system to manage the sourcecode, Gerrit for code review and Jenkins for Continuous
Integration. We assume you want to help to improve Saros and contribute your modifications. This little guide should help you to
get started, setup your environment, install Eclipse plugins and make your first modification and put it up for review. This guide
provides the information in both text and pictures, pick the one you prefer.

Usage of Images
You might have eyed at the number of pages of this guide, don’t be afraid. We are using a lot of pictures through out this guide
and they take a lot of space.

1.2 About this manual

This manual is created with DocBook. The sources are managed with Git and are available from the same server as the main
Saros plugin (git clone from http://saros-build.imp.fu-berlin.de/gerrit/saros-developer-guide), the review is done using Gerrit
and Jenkins is used to automatically update the website.

Saros Developer Documentation
2 / 52

Chapter 2

Rules

2.1 Code Rules

We have some simple rules for coding convention and commit messages. The current version can be found here. Please make
sure the Saros Formatter is enabled for the Saros projects.

2.2 Review Rules

Every change needs to be reviewed. This is for catching errors before they enter the tree and for allowing your peers to learn and
discover the code through review. As a courtsey to others, test your changes before asking them to be reviewed. We have unit
tests and subset of end-to-end tests that can be executed quickly.

https://www.inf.fu-berlin.de/w/SE/CodeRules

Saros Developer Documentation
3 / 52

Chapter 3

Installing and Configuring Plugins

3.1 Installing the SVN Plugin

Saros can integrate with the SVN Team support and needs to have access to the plugin when compiling and being executed. We
are using version 1.6.x of the Subclipse plugin.

3.1.1 Installation of Subclipse (textual)

1. OPEN THE NEW SOFTWARE DIALOG

Help → Install New Software

2. PRESS THE ADD BUTTON TO ADD A SITE

Add to add the site.

3. ADD SUBCLIPSE REPOSITORY

Pick a name for the Name field, enter the following http://subclipse.tigris.org/update_1.6.x into the Location field and press
Ok.

4. SELECT SUBCLIPSE

Select the Subclipse group and press Next.

5. REVIEW THE INSTALLATION DETAILS

Review the installation details and continue by pressing Next.

6. ACCEPT LICENSES

Review and accept the license and continue by pressing Finish. This will start the installation

7. INSTALLATION PROCESS

You will be presented the progress of the installation

8. UNSIGNED PACKAGES

The packages are not cryptographically signed, nothing we can change right now.

9. RESTART ECLIPSE

You will be asked to restart Eclipse at the end of the installation.

10. FEEDBACK

You are asked if you want to participate in providing feedback, the choice is yours.

http://subclipse.tigris.org/
http://subclipse.tigris.org/update_1.6.x

Saros Developer Documentation
4 / 52

3.1.2 Installation of Subclipse (graphical)

1. OPEN THE NEW SOFTWARE DIALOG

2. PRESS THE ADD BUTTON TO ADD A SITE

3. ADD SUBCLIPSE REPOSITORY

4. SELECT SUBCLIPSE

Saros Developer Documentation
5 / 52

5. REVIEW THE INSTALLATION DETAILS

6. ACCEPT LICENSES

7. INSTALLATION PROCESS

Saros Developer Documentation
6 / 52

8. UNSIGNED PACKAGES

9. RESTART ECLIPSE

10. FEEDBACK

Saros Developer Documentation
7 / 52

3.2 Installing the Git Plugin

The Saros Team is using Git to manage the source code. You will need to install the EGit plugin to get a copy of the Saros source
code and start working on it.

3.2.1 Installation of EGit (textual)

1. OPEN THE NEW SOFTWARE DIALOG

Help → Install New Software

2. PRESS THE ADD BUTTON TO ADD A SITE

Add to add the site.

3. ADD EGIT REPOSITORY

Pick a name for the Name field, enter the following http://download.eclipse.org/egit/updates into the Location field and
press Ok.

4. SELECT EGIT

Select the Eclipse Git Team Provider and press Next button.

5. REVIEW THE INSTALLATION DETAILS

Review the installation details and continue by pressing the Next.

6. ACCEPT LICENSES

Review and accept the license and continue by pressing Finish. This will start the installation

7. INSTALLATION PROCESS

You will be presented the progress of the installation

8. RESTART ECLIPSE

You will be asked to restart Eclipse at the end of the installation.

http://git-scm.com
http://eclipse.org/egit/
http://download.eclipse.org/egit/updates

Saros Developer Documentation
8 / 52

3.2.2 Installation of EGit (graphical)

1. OPEN THE NEW SOFTWARE DIALOG

2. PRESS THE ADD BUTTON TO ADD A SITE

3. ADD EGIT REPOSITORY

4. SELECT EGIT

Saros Developer Documentation
9 / 52

5. REVIEW THE INSTALLATION DETAILS

6. ACCEPT LICENSES

7. RESTART ECLIPSE

Saros Developer Documentation
10 / 52

3.2.3 Known issues

3.2.3.1 Password for the private key is not accepted

This issue is described in Bug 326526 and is caused by EGit/JSCH not being able to read AES encrypted private keys. The
available workarounds are to use 3DES encrypted keys, set the GIT_SSH=/usr/bin/ssh before launching Eclipse or upgrade
JSCH to version 0.1.45.

3.3 Installing the JTourbus Plugin

JTourBus allows to describe aspects of the code as route. Each route has a numbered list of stops inside the code. The route
can be browsed from within eclipse using this plugin. JTourBus is used in Saros to document the basics and the following will
inform you on how to install the plugin.

3.3.1 Installation of JTourBus (textual)

1. OPEN THE NEW SOFTWARE DIALOG

Help → Install New Software

2. PRESS THE ADD BUTTON TO ADD A SITE

Add to add the site.

3. ADD JTOURBUS REPOSITORY

Pick a name for the Name field, enter the following http://saros-build.imp.fu-berlin.de/update-jtourbus into the Location
field and press Ok.

4. SELECT JTOURBUS

Select JTourBus and press Next button.

5. REVIEW THE INSTALLATION DETAILS

Review the installation details and continue by pressing the Next.

6. ACCEPT LICENSES

Review and accept the license and continue by pressing Finish. This will start the installation

7. ACCEPT UNSIGNED CONTENT

Press Ok to install unsigned content.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=326526
http://www.inf.fu-berlin.de/w/SE/JTourBus
http://saros-build.imp.fu-berlin.de/update-jtourbus/

Saros Developer Documentation
11 / 52

8. INSTALLATION PROCESS

You will be presented the progress of the installation

9. RESTART ECLIPSE

You will be asked to restart Eclipse at the end of the installation.

3.3.2 Installation of JTourBus (graphical)

1. OPEN THE NEW SOFTWARE DIALOG

2. PRESS THE ADD BUTTON TO ADD A SITE

3. ADD JTOURBUS REPOSITORY

Saros Developer Documentation
12 / 52

4. SELECT JTOURBUS

5. REVIEW THE INSTALLATION DETAILS

6. ACCEPT LICENSES

Saros Developer Documentation
13 / 52

7. ACCEPT UNSIGNED

8. RESTART ECLIPSE

Saros Developer Documentation
14 / 52

Chapter 4

Sourcecode and Review

We are using Git to manage our source code, Jenkins for continuous integration and Gerrit for the code review. We assume
that you understand the benefits of version control, continuous integration and code review but you might not know the specific
utilities. This chapter should help you find out how they are integrated and how you are going to use them.

You will need to get the source code from our main git repository. After you have completed modifications to the source you can
create local commits. Your commits can be pushed to a repository you own or you can push them into the Gerrit code review
system. This will result in Gerrit creating a Chase and will lead to the Jenkins server being triggered and asked to compile and
test your commits. The result will be returned to Gerrit. Your teammates are asked to make reviews of your. You are asked
to modify your change until both the Jennkins result and the feedback of your teammates is positive. Your commits will be
automatically integrated into the main repository.

4.1 Version Control with Git

4.1.1 Introduction to Git

Git is a modern and widely used version control system. We assume that you have already worked with another version control
system and will solely focus on some Git basics and how this is can be used in the context of Saros. The central concept is a Git
Repository, it is located in the .git/ subdirectory and holds the entire history of the project (branches, commits, all versions
of files). The Git checkout command takes a specific revision from your local repository and updates, adds and removes files
from your Git working directory to match the state of that revision. Git commit allows you to create a local commit that will
be stored in your local Git Repository. The Git Index is a unique concept that represents the state that will be used for the next
commit. You will mostly use it to add a new file, remove an existing one. An advanced usage of the Git Index is to partially add
modifications of a file to the index, in the beginning you will probably not want to use that specific feature though. Git allows
you to create local branches that are branched off any Git commit that is already in the local Git Repository. In case you created
a Git Commit too quickly you can always amend to the last one. Once you want to share your changes you will need to Git push,
this will move your local changes to the remote Git Repository. To get changes from a remote Git Repository you will need to
use the Git pull. This will transfer all commits from the remote repository to your local one and it will try to move your changes
to the top of the history. The last operation is called a Git rebase.

There are plenty of Git introductions available on the web, some describe the technical details, some are for people coming from
Subversion, some show how to use the Eclipse integration. The Git website has a documentation section with links to good
documentation. If the following guide is not enough you should be able to find information there.

4.1.2 Git clone with EGit (textual)

EGit Plugin versions
The below procedure was tested with Eclipse 3.7.1 and EGit plugin version 1.3.0.201202151440-r.

http://git-scm.com
http://git-scm.com
http://git-scm.com
http://git.or.cz/course/svn.html
http://git-scm.com
http://git-scm.com/documentation

Saros Developer Documentation
15 / 52

1. BEGIN

File → Import

2. SELECT IMPORT FROM GIT

Select Git → Projects from Git and press Next.

3. SELECT REPOSITORY SOURCE

Select URI and press Next.

4. SOURCE GIT REPOSITORY

Fill in dpp.git.sourceforge.net as Host, use gitroot/dpp/saros as repository path and select git as the protocol and finish by
pressing the Next button.

5. SELECT THE BRANCH

Select the master branch and continue by pressing Next.

6. SELECT LOCAL DESTINATION

Decide where to store the cloned Git repository. The proposed directory should work and press Next.

7. CLONING THE REPOSITORY

Progress of downloading the repository is shown.

8. SELECT PROJECT DIRECTORY

Select Import existing projects and import the top level directory Working Directory and continue using the Next button.

9. IMPORT PROJECTS

Select at least the de.fu_berlin.inf.nebula and Saros to import.

10. SWITCH TO Git Perspective

Clicking on Window+Open Perspective → Other and select the Git Perspective.

11. ENTER GERRIT CONFIGURATION

Unfold the Saros, Remotes and origin folder. Use the context menu and select Gerrit Configuration.

12. CONFIGURE GERRIT

Use ssh://saros-build.imp.fu-berlin.de:29418/saros.git as the Push URI and refs/for/master as the Destination branch.

13. VERIFY EGIT IS ENABLED

Switch to the Java Perspective and use the context menu in the Package Explorer and verify that the Team contains options
for commit.

4.1.3 Git clone with EGit (graphical)

1. BEGIN

Saros Developer Documentation
16 / 52

2. SELECT IMPORT FROM GIT

3. SELECT REPOSITORY SOURCE

4. SOURCE GIT REPOSITORY

Saros Developer Documentation
17 / 52

Host: dpp.git.sourceforge.net, Path: gitroot/dpp/saros

5. SELECT THE BRANCH

6. SELECT LOCAL DESTINATION

7. CLONING THE REPOSITORY

Saros Developer Documentation
18 / 52

8. SELECT PROJECT DIRECTORY

9. IMPORT PROJECTS

10. SWITCH TO THE GIT PERSPECTIVE

Saros Developer Documentation
19 / 52

11. SWITCH TO THE GIT PERSPECTIVE

12. ENABLE GERRIT

13. CONFIGURE GERRIT

Saros Developer Documentation
20 / 52

Use saros-build.imp.fu-berlin.de and refs/for/master

14. VERIFY EGIT BEING USED IN THE JAVA PERSPECTIVE

4.2 Configuring Git for Gerrit

So far you managed to clone a remote Git repository and have checked out the default branch. To make local commits you
will need to set a name and email address. If you do not do this Gerrit might reject your commits. If you want to make your
changes available and ask for review you will need to push your local commits into the Gerrit Git repository. Git is using SSH
to communicate with remote Git repositories, you will authenticate with your private SSH key. The following sections will show
you how to do it.

4.2.1 Creating an SSH key

You can create SSH keys using Eclipse. The following procedure will explain the process.

1. OPEN THE PREFERENCES

Window → Preferences

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell

Saros Developer Documentation
21 / 52

2. SELECT THE SSH CONFIGURATION

Enter SSH into the search field and select SSH2.

3. SWITCH TO THE KEY MANAGEMENT TAB

4. GENERATE A RSA KEY

Select the Generate RSA Key to generate a new key pair. Optionally set a password. The selected text is the public key
and needs to be used for Gerrit.

Saros Developer Documentation
22 / 52

5. SAVE THE KEY

Press Save Private Key to store the new keypair. This will require clicking a couple of times.

Saros Developer Documentation
23 / 52

4.2.2 Setting your name and email address

You will need to set your name and email address. Git has a very simple configuration format. You will need to set the keys
user.name and user.email to the names of your choice. The below procedure will show you how to do it and then you are ready
to make local commits.

1. OPEN THE PREFERENCES

Window → Preferences

2. OPEN THE GIT CONFIGURATION

Search for Git and select the Configuration page.

Saros Developer Documentation
24 / 52

3. ADD AN ENTRY FOR YOUR NAME

Press the New Entry button and use user.name as the key and set your name as the value.

4. ADD AN ENTRY FOR YOUR EMAIL ADDRESS

Press the New Entry button and use user.email as the key and set your email address as the value.

Saros Developer Documentation
25 / 52

4.3 Register on Gerrit

We are using Gerrit for code review and automatic integration of reviewed patches. You will need to create an account, pick a
user name, register your email addresses and add your public SSH key. Gerrit will compare the committer email address in the
Git commits with the registered email addresses for your SSH key.

4.3.1 Signing up using OpenID

Our Gerrit is doing authentication based on OpenID. This means you will need to have an account with an OpenID provider.
Google and Yahoo are well known providers. After you signed up you need to pick a user name, add your email addresses and
SSH keys. The first time you login all this can be done from the landing page.

1. NAVIGATE TO GERRIT

Go to http://saros-build.imp.fu-berlin.de/gerrit and press Sign In.

2. SELECT AN OPENID PROVIDER

Select your OpenID provider, e.g. Yahoo, Google, Livejournal, MyOpenID.

3. SIGN INTO YOUR OPENID PROVIDER

You will need to sign into your account.

http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/OpenID
http://en.wikipedia.org/wiki/OpenID
http://saros-build.imp.fu-berlin.de/gerrit

Saros Developer Documentation
26 / 52

4. AUTHORIZE THE USAGE BY GERRIT

Allow to use your identity by Gerrit.

5. CONFIGURE THE GERRIT ACCOUNT

Your browser will return to our Gerrit and you will need to set your name, pick a user name, add your SSH keys. You
should ask your supervisor to add you to the Reviewer group to be allowed to make reviews and submit code.

Saros Developer Documentation
27 / 52

4.3.2 Concepts and Terminology

Change
Every time you push a commit with a new Change-Id Gerrit allocates a change. The change contains a number of patchsets,
comments on the patchsets and ratings in various categories. Each change has a dedicated page that shows information
about it. This includes dependencies between different changes, patchsets and the review comments.

Category
A category has a name and a rating scale. This is used to allow Users, Jenkins and other scripts to provide review. Right
now we have the Verified, Review and Sanity categories are configured. The rating can range from -2 to +2.

Patchset
A patchset is a git commit that has been pushed to Gerrit. Gerrit uses the Change-Id of the commit meesage to identify the
change. Each patchset can receive inline comments.

Submit
Once a change has received a +2 in the Review category and no negative voting in the other categories the last patchset can
be submitted. This means Gerrit will now try to merge your patchset and mark the change as merged.

4.3.3 Making a review

Once you have opened the Gerrit page you can move to the list of changes that require review by clicking All. This will show
you the list of all changes that require action. Clicking on any of these changes will bring you to the change overview. This
page contains information about the change, already received voting, dependencies of the change with other changes and allows
you to look at the current patchset and leave inline comments. Once you went through all the touched files you can click the
Review button, leave a vote and provide a comment. The easiest way to start the review is by clicking on the Commit Message
and then jump to the next file. Inside the Differences view you can modify the display by clicking on the Side-by-Side, Unified
Preferences, Patch Sets links.

1. SWITCH TO THE All PAGE

Select the change you want to review

2. INDIVIDUAL Change PAGE

Saros Developer Documentation
28 / 52

Check existing reviews, dependencies and scroll down to the patchsets and start your review by pressing on the Commit
Message.

3. PROVIDE COMMENTS

Provide inline comments, or go to the Preferences to change the way the patch is displayed.

4. FINISHING THE REVIEW

Press the Up to Change to return to the change page and then the Review to finish your review and leave some final
comments and rate the change.

Saros Developer Documentation
29 / 52

4.3.4 Submitting a change

Once a patchset of a change has been approved the Submit Patchset will appear on the screen. Press the button to try to integrate
your patch. The most common reasons that a patchset will not integrate is that a dependency is not integrated yet or the patchset
can not be cleanly merged. For the later the following chapter will explain how you can rebase it and re-push it.

4.4 Summary

4.4.1 System Overview

In the previous sections we looked at the EGit and Gerrit integration and will now connect the dots between those systems. Once
you have installed EGit you will need to Git clone the Saros repository, you can then make local changes, create branches, move
files, etc. The local commits can be pushed from your local Git repository to the Gerrit system. The changes can now be reviewed
in Gerrit by the Saros team. The Jenkins CI system will be triggered and will test your change and report back to Gerrit. Once
the change is approved it can be submitted and will be merged into the official Git repository.

Saros Developer Documentation
30 / 52

v1 [1]v2 [2]

v3 [3] v4 [4]

v5 [5]

v6 [6]

v1 Clone a remote repository and checkout the default branch. This will create a local directory and populate the working
directory.v2 Create local branches, add new files and make local commits. This will create local history in your Git repository.v3 Push your local branch to Gerrit for review. Gerrit will assign you a change number. The change can now be reviewed.v4 Jenkins will be notified about your change and will execute the test cases. The result of the tests will be reported back to
Gerrit.v5 After a change is approved it can be submitted and will be integrated into the repository. Gerrit will push the changes to
Github.v6 This will copy the current state of a remote repository into your local repository. Your current changes will move from
the old last revision of the remote repository to the new one.

Figure 4.1: Code, Review and Test workflow

Saros Developer Documentation
31 / 52

Chapter 5

Making changes to Saros

This chapter will show you how to work with EGit and Gerrit in the most common cases. This includes testing the code of
someone else, making your first change, editing your change after having received review, updating your change to apply against
the latest version of Saros. This will conclude with more advanced usage of having a chain of changes that build on top of each
other and being asked to modify a change that is in the middle. This does not replace taking a look at the rather lengthy Eclipse
EGit Wiki.

5.1 Cleaning your working copy

You might have created new classes and they are not under version version control yet and now you would like to switch the
branch. Files not under version control will not be removed when switching branches. In some cases this might not be what you
want and you could create a work in progress commit with the new files and later amend the commit with more changes and a
better Git commit message. The other option is to remove files and this is what will be handled now.

5.1.1 Reverting local modifications

The easiest way to revert your un-comitted modifications is to use the Git reset feature. You want to use the hard option. This
will reset the last commit of your history to the selected commit and will modify your working directory to match this commit.

1. Enter the context menu and select Team → Reset.

2. Select the branch/last commit. The default is the last commit. Select hard as the reset type.

3. Confirm the reset option.

4. The package explores does not indicate any modification.

1. ENTER CONTEXTMENU

http://wiki.eclipse.org/EGit/User_Guide
http://wiki.eclipse.org/EGit/User_Guide

Saros Developer Documentation
32 / 52

2. SELECT RESET TYPE

3. CONFIRM

4. CLEAN TREE

Saros Developer Documentation
33 / 52

5.1.2 Deleting untracked/new files

The Git reset feature does not remove files that are not under version control. The Team Synchronizing perspective will show you
files not under version control. You can easily delete these files in this perspective.

1. Use the Contextmenu and then Team → Synchronize Workspace.

2. Confirm moving to the Team Synchronizing perspective.

3. Select the files you want to remove and use the Contextmenu to delete them.

1. ENTER CONTEXTMENU

2. SWITCH PERSPECTIVE

Saros Developer Documentation
34 / 52

3. DELETE FILES

4. CONFIRM

5. NO CHANGES LEFT

Saros Developer Documentation
35 / 52

5.2 Downloading a change

A member of your team has made some changes and uploaded them to Gerrit. You might want to test his change and the EGit
plugin has support to make that very easy. The below will go through the necessary steps to fetch a change from Gerrit into a
new local branch. The procedure assumes that you are in the Git Perspective.

5.2.1 Downloading a change (textual)

1. SELECT FETCH FROM GERRIT

Enter the context menu on the Git Repository and select the Fetch From Gerrit.

2. SELECT A CHANGE BY CTRL+I

You can enter the change directly or use CTRL+I to fetch a list of available changes an select it from a dropdown menu or
enter it directly.

3. SELECT A CHANGE FROM THE DROPDOWN

Select the change and the patchset you want. If you enter it directly use e.g. refs/changes/47/47/3, the format is to give the
last two digits of the change, followed by the complete change number and then select the patchset you want.

4. CREATE A LOCAL BRANCH

Pick a local name and put it into the Branch name lineedit. This way you will have a local branch with the chosen name.

5. SWITCHED TO LOCAL BRANCH

EGit will indicate that it switched to your new branch.

5.2.2 Downloading a change (graphical)

1. SELECT FETCH FROM GERRIT

Saros Developer Documentation
36 / 52

2. SELECT A CHANGE BY CTRL+I

3. SELECT A CHANGE FROM THE DROPDOWN

4. CREATE A LOCAL BRANCH

Saros Developer Documentation
37 / 52

5. SWITCHED TO LOCAL BRANCH

5.3 Doing your first change

Hopefully sooner than later you are ready to send your first contribution. You will need to create a Git commit and post it for
review to our Gerrit installation. General information about using EGit can be found in the Eclipse EGit Wiki.

5.3.1 The first change (textual)

1. OPEN ANY FILE

E.g. open Utils.java file.

2. MAKE A MODIFICATION

E.g. remove the getFreePort method.

3. ADD CHANGE TO THE INDEX

Use the context menu of the file to access Team → Add to Index. This moves the change into the index and marks the new
version as to be committed.

4. COMMIT

Commit all changes that are in the index.

http://wiki.eclipse.org/EGit/User_Guide

Saros Developer Documentation
38 / 52

5. WRITING A COMMIT MESSAGE

Make sure that the Gerrit option is enabled and that a line with Change-Id is in the editor field. Follow our Commit
Guidelines for writing the message.

6. SWITCH TO THE REPOSITORY VIEW

Use the context menu and Team → Show in Repository View to switch to another view to be able to push your changes.

7. PUSH

Use the context menu on the repository and select the Push item.

8. SELECT TARGET

Select the pre-configured Gerrit repository as the target for your changes and continue by pressing the Next button.

9. SELECT BRANCH

Select what and where to push things. The default Destination Ref should be refs/for/master and press Next to continue.

10. PUSH CONFIRMATION

Review what and where things are pushed and Finish .

11. PUSH RESULT

The result should include a set of change numbers of the Gerrit system.

5.3.2 The first change (graphical)

1. OPEN A UTILS.JAVA

2. MAKE A MODIFICATION

https://www.inf.fu-berlin.de/w/SE/CodeRules#Before_Committing_Formatting_and
https://www.inf.fu-berlin.de/w/SE/CodeRules#Before_Committing_Formatting_and

Saros Developer Documentation
39 / 52

3. ADD CHANGE TO THE INDEX

4. COMMIT

5. WRITING A COMMIT MESSAGE

Saros Developer Documentation
40 / 52

6. SWITCH TO THE REPOSITORY VIEW

7. PUSH

8. SELECT TARGET

Saros Developer Documentation
41 / 52

9. SELECT BRANCH

10. PUSH CONFIRMATION

11. PUSH RESULT

Saros Developer Documentation
42 / 52

5.3.3 Understanding build failures

After you pushed your changes to Gerrit, the Saros-Gerrit job will be scheduled on the Jenkins CI system. The execution of this
job might fail and the most common errors are missing files, build failures due building on an older OSGI/Eclipse version or
test failures because the tests are run without SWT/GUI being initialized. The below will help you to identify the reason of the
failure.

In case the build has failed it can be difficult to find the error in the ant log. The easiest is to search for . ERROR in the console
log of the job. An example for a build failure is Job 24, try to find the error.

5.3.4 Dealing with feedback

Imagine you made three commits on top of each other and have pushed them to Gerrit. Now either you or a reviewer has found
something that should be modified in any of the separate changes. The straightforward way is to use the built-in Gerrit support
to create a new branch with these changes, make the desired modifications, amend to the old commit and push it to Gerrit again.

1. FETCH FROM GERRIT

From within the Git repository view select the context menu and press Fetch from Gerrit

2. SELECT A CHANGE

You will need to select a change or use Control+Space to search for changes.

http://saros-build.imp.fu-berlin.de/jenkins/job/Saros-Gerrit/24/console

Saros Developer Documentation
43 / 52

3. PICK A LOCAL BRANCH NAME

Select a name for the local branch.

4. START YOUR MODIFICATION

You are on a branch that contains your previous change. You are now able to do the desired modification.

5. AMENDING YOUR COMMIT

Saros Developer Documentation
44 / 52

Once you are done with your modification, enter the commit editor and select the amend button. This will combine your
new and old change. The commit dialog will automatically pick the commit message from the previous commit.

6. PUSHING YOUR COMMITS

If you push your current branch to Gerrit again, Gerrit will update the patches in the changes.

7. DELETING A BRANCH

You can now checkout a different branch and delete the old one.

5.4 Updating your changes

5.4.1 Fetch, Rebase and Push

You have started your work, created a local branch based on the last commit of origin/master. During the time you made your
changes and now some other changes were integrated into origin/master and you want to update. This can be done by combining
two operations. The first is Git fetch to fetch all changes from the origin into your local Git repository. This operation will update
the origin/master branch to the state of the remote Git repository. The second operation is Git rebase. This will move any local
commits to the new origin/master. The operation is called Git rebase because your local changes will be moved from the old
state of origin/master to the current state of it. During the Git rebase local commits can vanish as they are already included, or
you can end with a conflict. In that case you will be presented with multiple options, to abort the rebase, to skip (remove) the
commit that caused the conflict or to attempt to merge it using the mergetool. Once you have resolved the conflicts use Team
→ Rebase → Continue to continue with the next local Git commit..

Saros Developer Documentation
45 / 52

1. Enter the Contextmenu, select Team → Fetch from Upstream.

2. An overview with changes appear

3. Enter the Contextmenu, select Team → Rebase.

4. Select the branch you want to rebase against.

5. On conflict a dialog will ask you to make a decision on how to resolve it. Once it is resolved selectTeam → Rebase
→ Continue in the contextmenu to continue with the next commit.

6. Your branch is now based on the new origin/master

1. FETCH FROM UPSTREAM

2. RESULT

3. BEGIN REBASE

Saros Developer Documentation
46 / 52

4. SELECT BRANCH

5. CONFLICT

6. ABORT

Saros Developer Documentation
47 / 52

When the rebase goes wrong
When the rebase goes wrong you have two options. You can either select Team → Rebase → Abort or if you notice after the
rebase the Git Reflog contains your changes before the Git rebase and you can checkout this version again.

External Git mergetool
On OSX and Linux you can use git mergetool on the command line to use opendiff/kdiff3/meld to the merging.

5.5 Advanced Git Topics

You might have started to use Git beyond the featureset of SVN and have a chain of local commits. You have asked to review
your chain of changes and a peer has found an issue in of the changes in the middle of the chain. From the previous chapters you
have seen how to the modification of a single change and this is what you need to do first, the next thing is to rebase the commits
that followed the original one. And below there will be two alternatives for doing that.

5.5.1 Cherry-pick

TODO: describe cherry-pick

5.5.2 Staging Changes

TODO

5.6 Tasks during a release

For the release two additional tasks are required. The first is to create the branch and the second is to push bugfixes to the right
branch. In both cases this is done by selecting another branch in the destination branch when pushing your changes. In case
of creating the release branch the right destination branch is refs/heads/release/DATE, asking for review is done through the
refs/for/release/DATE branch.

Saros Developer Documentation
48 / 52

Task Destination Reference
Create Release Branch refs/heads/release/DATE
Change for Release refs/for/release/DATE

Table 5.1: Destination Reference

5.6.1 Pushing to a non default branch (textual)

1. SELECT PUSH IN THE CONTEXT MENU

Inside the Git repository view activate the context menu and select the Push item.

2. SELECT THE CONFIGURED REMOTE REPOSITORY

The configured remote repository is selected by default, move to the next page by pressing the Next button.

3. SPECIFY THE BRANCH NAME

Inside the Specifications for push area change refs/for/master to the branch name mentioned above and continue to the next
page.

4. PUSH CONFIRMATION

Confirm the push and finish the dialog

5.6.2 Pushing to a non default branch (graphical)

1. SELECT PUSH IN THE CONTEXT MENU

2. SELECT THE CONFIGURED REMOTE REPOSITORY

Saros Developer Documentation
49 / 52

3. SPECIFY THE BRANCH NAME

4. PUSH CONFIRMATION

Confirm the push and finish the dialog

Saros Developer Documentation
50 / 52

Chapter 6

Patterns and Anti-Patterns

There are various patterns we want to be used and there have been various anti-patterns we don’t want to see again. This section
provides an illustration of what is good and what should be avoided and give reasons about it.

Under Construction
Not completed yet.

6.1 Anti-Patterns

6.1.1 PicoContainer usage

The PicoContainer will resolve dependencies between objects. For this to work properly one needs to have all dependencies as
parameters of the constructors. One common misuse is to get a dependency with an indirection.

public class SkypeManager {
private final SarosNet sarosNet;
private final IPreferenceStore preferences;

public SkypeManager(Saros saros) {
this.sarosNet = saros.getSarosNet();
this.preferences = saros.getPreferenceStore();

}
}

The above code has dependencies on SarosNet and IPreferenceStore and they are resolved through the Saros instance. This is a
problem when it comes to testing, there might not be a mock for the SarosNet or the IPreferenceStore store and one might have
an NullPointerException. The below code shows how to properly express the dependencies.

public class SkypeManager {
private final SarosNet sarosNet;
private final IPreferenceStore preferences;

public SkypeManager(SarosNet sarosNet, IPreferenceStore preferences) {
this.sarosNet = sarosNet;
this.preferences = preferences;

}
}

Saros Developer Documentation
51 / 52

6.1.2 Use Interfaces

TODO: E.g. ISarosSession vs. Session, talk about testability

6.1.3 Splitting Work

Describe.. splitting work across different threads and synch. issues

6.1.4 ...

MORE

Saros Developer Documentation
52 / 52

Chapter 7

Configuration of Gerrit

This is mostly a guide for the project owner. Our Gerrit has some project specific configuration that is explained in this chapter.

7.1 Grant push access to Gerrit

Users in the Approved group are allowed to push. Add new users to this group.

7.2 Granting +2/-2 and the right to submit

Users in the Approvers group are allowed to set +2/-2 in the review category, override the verified ranking and are allowed to
submit approved changes.

7.3 Granting branch creation

Users in the Release-Managers group are allowed to push merges for review and to create new branches.

http://saros-build.imp.fu-berlin.de/gerrit/#/admin/groups/7,members
http://saros-build.imp.fu-berlin.de/gerrit/#/admin/groups/6,members
http://saros-build.imp.fu-berlin.de/gerrit/#/admin/groups/9,members

	Introduction
	Overview
	About this manual

	Rules
	Code Rules
	Review Rules

	Installing and Configuring Plugins
	Installing the SVN Plugin
	Installation of Subclipse (textual)
	Installation of Subclipse (graphical)

	Installing the Git Plugin
	Installation of EGit (textual)
	Installation of EGit (graphical)
	Known issues
	Password for the private key is not accepted

	Installing the JTourbus Plugin
	Installation of JTourBus (textual)
	Installation of JTourBus (graphical)

	Sourcecode and Review
	Version Control with Git
	Introduction to Git
	Git clone with EGit (textual)
	Git clone with EGit (graphical)

	Configuring Git for Gerrit
	Creating an SSH key
	Setting your name and email address

	Register on Gerrit
	Signing up using OpenID
	Concepts and Terminology
	Making a review
	Submitting a change

	Summary
	System Overview

	Making changes to Saros
	Cleaning your working copy
	Reverting local modifications
	Deleting untracked/new files

	Downloading a change
	Downloading a change (textual)
	Downloading a change (graphical)

	Doing your first change
	The first change (textual)
	The first change (graphical)
	Understanding build failures
	Dealing with feedback

	Updating your changes
	Fetch, Rebase and Push

	Advanced Git Topics
	Cherry-pick
	Staging Changes

	Tasks during a release
	Pushing to a non default branch (textual)
	Pushing to a non default branch (graphical)

	Patterns and Anti-Patterns
	Anti-Patterns
	PicoContainer usage
	Use Interfaces
	Splitting Work
	...

	Configuration of Gerrit
	Grant push access to Gerrit
	Granting +2/-2 and the right to submit
	Granting branch creation

